Generalized varying coefficient partially linear measurement errors models

نویسندگان

  • Jun Zhang
  • Zhenghui Feng
  • Peirong Xu
  • Hua Liang
چکیده

We study generalized varying coefficient partially linearmodels when some linear covariates are error prone, but their ancillary variables are available. We first calibrate the error-prone covariates, then develop a quasi-likelihood-based estimation procedure. To select significant variables in the parametric part, we develop a penalized quasi-likelihood variable selection procedure, and the resulting penalized estimators are shown to be asymptotically normal and have the oracle property. Moreover, to select significant variables in the nonparametric component, we investigate asymptotic behavior of the semiparametric generalized likelihood ratio test. The limiting null distribution is shown to follow aChi-square distribution, and a newWilks phenomenon Electronic supplementary material The online version of this article (doi:10.1007/s10463-015-0532-y) contains supplementary material, which is available to authorized users. B Jun Zhang [email protected] Zhenghui Feng [email protected] Peirong Xu [email protected] Hua Liang [email protected] 1 Shen Zhen-Hong Kong Joint Research Centre for Applied Statistical Sciences, School of Mathematics and Statistics, Institute of Statistical Sciences, Shenzhen University, Shenzhen 518060, China 2 School of Economics, and the Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen 361005, China 3 Department of Mathematics, Southeast University, Nanjing 211189, China 4 Department of Statistics, George Washington University, Washington, DC 20052, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive LASSO for Varying-Coefficient Partially Linear Measurement Error Models

This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation and variable selection to a varying-coefficient partially linear model where some of the covariates are subject to measurement errors of an additive form. We draw comparisons with the SCAD, and prove that both the ALASSO and SCAD attain the oracle property under this setup. We further develop an algorithm in th...

متن کامل

Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition

In this paper, we consider the statistical inference for the partially liner varying coefficient model with measurement error in the nonparametric part when some prior information about the parametric part is available. The prior information is expressed in the form of exact linear restrictions. Two types of local bias-corrected restricted profile least squares estimators of the parametric comp...

متن کامل

Estimation in Partially linear Varying-coefficient Errors-in-Variable with stochastic linear restrictions

In this paper we study the estimator of the Partially linear Varying-coefficient Errors-inVariable model with stochastic linear restrictions. We present a mixed Profile least squares estimator when the covariates in the linear part are measured with additive error and some additional stochastic linear restrictions on the parametric component are available.

متن کامل

Generalized varying coefficient models for longitudinal data

We propose a generalization of the varying coefficient model for longitudinal data to cases where not only current but also recent past values of the predictor process affect current response. More precisely, the targeted regression coefficient functions of the proposed model have sliding window supports around current time t. A variant of a recently proposed two-step estimation method for vary...

متن کامل

Testing serial correlation in semiparametric varying coefficient partially linear errors-in-variables model

Abstract The authors propose a VN,p test statistic for testing finite-order serial correlation in a semiparametric varying coefficient partially linear errors-in-variables model. The test statistic is shown to have asymptotic normal distribution under the null hypothesis of no serial correlation. Some Monte Carlo experiments are conducted to examine the finite sample performance of the proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015